void forward_connected_layer(connected_layer l, network net) { int i; fill_cpu(l.outputs*l.batch, 0, l.output, 1); int m = l.batch; int k = l.inputs; int n = l.outputs; float *a = net.input; float *b = l.weights; float *c = l.output; gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); if(l.batch_normalize){ if(net.train){ mean_cpu(l.output, l.batch, l.outputs, 1, l.mean); variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance); scal_cpu(l.outputs, .95, l.rolling_mean, 1); axpy_cpu(l.outputs, .05, l.mean, 1, l.rolling_mean, 1); scal_cpu(l.outputs, .95, l.rolling_variance, 1); axpy_cpu(l.outputs, .05, l.variance, 1, l.rolling_variance, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); } else { normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1); } scale_bias(l.output, l.scales, l.batch, l.outputs, 1); } for(i = 0; i < l.batch; ++i){ axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1); } activate_array(l.output, l.outputs*l.batch, l.activation); }
|